Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 209: 105481, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481388

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells using angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) as the primary receptor and entry co-factor, respectively. Cell entry is the first and major step in initiation of the viral life cycle, representing an ideal target for antiviral interventions. In this study, we used a recombinant replication-deficient vesicular stomatitis virus-based pseudovirus bearing the spike protein of SARS-CoV-2 (SARS2-S) to screen a US Food and Drug Administration-approved drug library and identify inhibitors of SARS-CoV-2 cell entry. The screen identified 24 compounds as primary hits, and the largest therapeutic target group formed by these primary hits was composed of seven dopamine receptor D2 (DRD2) antagonists. Cell-based and biochemical assays revealed that the DRD2 antagonists inhibited both fusion activity and the binding of SARS2-S to NRP-1, but not its binding to ACE2. On the basis of structural similarity to the seven identified DRD2 antagonists, which included six phenothiazines, we examined the anti-SARS-CoV-2 activity of an additional 15 phenothiazines and found that all the tested phenothiazines shared an ability to inhibit SARS2-S-mediated cell entry. One of the phenothiazines, alimemazine, which had the lowest 50% effective concentration of the tested phenothiazines, exhibited a clear inhibitory effect on SARS2-S-NRP-1 binding and SARS-CoV-2 multiplication in cultured cells but not in a mouse infection model. Our findings provide a basis for the development of novel anti-SARS-CoV-2 therapeutics that interfere with SARS2-S binding to NRP-1.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/química , Neuropilina-1/metabolismo , Fenotiazinas/farmacologia , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Humanos
2.
J Biol Chem ; 298(2): 101576, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026225

RESUMO

Mammalian arenavirus (mammarenavirus) mRNAs are characterized by 5'-capped and 3'-nonpolyadenylated untranslated regions (UTRs). We previously reported that the nonpolyadenylated 3'-UTR of viral mRNA (vmRNA), which is derived from the noncoding intergenic region (IGR), regulates viral protein levels at the posttranscriptional level. This finding provided the basis for the development of novel live-attenuated vaccines (LAVs) against human pathogenic mammarenaviruses. Detailed information about the roles of specific vmRNA 3'-UTR sequences in controlling translation efficiency will help in understanding the mechanism underlying attenuation by IGR manipulations. Here, we characterize the roles of cis-acting mRNA regulatory sequences of a prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in modulating translational efficiency. Using in vitro transcribed RNA mimics encoding a reporter gene, we demonstrate that the 3'-UTR of nucleoprotein (NP) mRNA without a poly(A) tail promotes translation in a poly(A)-binding protein-independent manner. Comparison with the 3'-UTR of glycoprotein precursor mRNA, which is translated less efficiently, revealed that a 10-nucleotide sequence proximal to the NP open reading frame is essential for promoting translation. Modification of this 10-nucleotide sequence also impacted reporter gene expression in recombinant LCMV. Our findings will enable rational design of the 10-nucleotide sequence to further improve our mammarenavirus LAV candidates and to develop a novel LCMV vector capable of controlling foreign gene expression.


Assuntos
Vírus da Coriomeningite Linfocítica , Nucleoproteínas , RNA Mensageiro , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Humanos , Vírus da Coriomeningite Linfocítica/genética , Mamíferos/metabolismo , Nucleoproteínas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vacinas Atenuadas/genética , Vacinas Atenuadas/metabolismo
3.
Viruses ; 13(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418950

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), employs host-cell angiotensin-converting enzyme 2 (ACE2) for cell entry. Genetic analyses of ACE2 have identified several single-nucleotide polymorphisms (SNPs) specific to different human populations. Molecular dynamics simulations have indicated that several of these SNPs could affect interactions between SARS-CoV-2 and ACE2, thereby providing a partial explanation for the regional differences observed in SARS-CoV-2 infectivity and severity. However, the significance of population-specific ACE2 SNPs in SARS-CoV-2 infectivity is unknown, as no in vitro validation studies have been performed. Here, we analyzed the impact of eight SNPs found in specific populations on receptor binding and cell entry in vitro. Except for a SNP causing a nonsense mutation that reduced ACE2 expression, none of the selected SNPs markedly altered the interaction between ACE2 and the SARS-CoV-2 spike protein (SARS-2-S), which is responsible for receptor recognition and cell entry, or the efficiency of viral cell entry mediated by SARS-2-S. Our findings indicate that ACE2 polymorphisms have limited impact on the ACE2-dependent cell entry of SARS-CoV-2 and underscore the importance of future studies on the involvement of population-specific SNPs of other host genes in susceptibility toward SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , COVID-19/virologia , Receptores Virais/genética , SARS-CoV-2/fisiologia , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Genética Populacional , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Testes de Neutralização , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Receptores Virais/química , Internalização do Vírus
4.
Eur J Ophthalmol ; 31(2): 379-384, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31813297

RESUMO

PURPOSE: The aim of this study was to test the antiviral effectivity of potassium peroxymonosulfate (RUBYSTA®, KYORIN) against five epidemic keratoconjunctivitis-related types of Human adenovirus D in vitro. METHODS: Five types of Human adenovirus D (8, 37, 53, 54 and 56) were incubated with 1% potassium peroxymonosulfate, 0.1% sodium hypochlorite (NaClO) or alcohol-based disinfectant for 30 s or 1 min. These solutions were subjected to measurements of viral titres by infection assays in A549 cells. At day 6 post-infection, both, supernatants and cells, were collected and the viral genome was assessed by real-time polymerase chain reaction analysis. RESULTS: Treatments with 1% potassium peroxymonosulfate led to significant reduction in all tested Human adenovirus D types comparable to disinfecting effects by 0.1% NaClO. Overall, potassium peroxymonosulfate demonstrated sufficient inactivation of the major epidemic keratoconjunctivitis-causing Human adenovirus D to be considered for disinfection and prevention purposes in ophthalmological clinics and hospitals. CONCLUSION: This study demonstrated that potassium peroxymonosulfate is a promising disinfectant for the prevention of epidemic keratoconjunctivitis nosocomial infections in ophthalmological clinics.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/efeitos dos fármacos , Desinfetantes/farmacologia , Ceratoconjuntivite/virologia , Oxidantes/farmacologia , Peróxidos/farmacologia , Células A549 , Infecção Hospitalar/prevenção & controle , Epidemias , Humanos , Replicação Viral/efeitos dos fármacos
5.
Cell Immunol ; 356: 104188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763501

RESUMO

Stimulator of interferon genes (STING) plays important roles in the DNA-mediated innate immune responses. However, the regulatory mechanism of STING in terms of stabilization is not fully understood. Here, we identified the chaperone protein Hsp90s as novel STING interacting proteins. Treatment with an Hsp90 inhibitor 17-AAG and knockdown of Hsp90ß but not Hsp90α reduced STING at protein level, resulted in the suppression of IFN induction in response to stimulation with cGAMP, and infections with HSV-1 and Listeria monocytogenes. Collectively, our results suggest that the control of STING protein by Hsp90ß is a critical biological process in the DNA sensing pathways.


Assuntos
Proteínas de Choque Térmico HSP90/imunologia , Proteínas de Membrana/imunologia , Animais , DNA Viral/imunologia , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Imunidade Inata , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...